Week Commencing $4^{\text {th }}$ January 2020
Monday $4^{\text {th }}-I$ can add 4 digit numbers and 3 digit numbers with more than one exchange using pictorial representations.

Please have a go at working these out using pictures of base 10.
a) $2357+892$
b) $3578+923$
c) $5789+235$

Tuesday $5^{\text {th }}-I$ can add 4 digit numbers and 3 digit numbers with more than one exchange using the column method.

Take your questions from yesterday. Cover up the answers. Now try and work them out using the column method. When you have finished, look back to yesterday's work and see if you got the same answer. If you did, excellent! If you didn't, work it out using both methods again and try and see where you have gone wrong. If you still can't figure out where you went wrong, email me a picture and I will see if I can spot your mistake to help you on your way.

Wednesday $6^{\text {th }} \boldsymbol{-}$ I can add 2 4-digit numbers with no exchange using pictorial representations.

Use counters and a place value grid to calculate $3,242+2,213$

$1,000 \mathrm{~s}$	100 s	10 s	1 ls
1000	100	100	1
1000	100	10	1

Now calculate $3,242+213$ in the same way.
What is the same and what is different?

Thursday $7^{\text {th }} \mathbf{- I}$ can add 2 4-digit numbers with no exchange using the column method.

Rosie adds 2 numbers together that total 4,444

What could the numbers be?
Prove it.
How many ways can you find?

Friday $8^{\text {th }}-I$ can add 2 4-digit numbers with one exchange using pictorial representations.

https://whiterosemaths.com/homelearning/year-4/week-5/

Watch the video entitled, "Add 24 -digit numbers with 1 exchange."
Watch this video up to 6 minutes 38 seconds.
Week Commencing $11^{\text {th }}$ January 2020
Monday $11^{\text {th }} \mathbf{- I}$ can add $\mathbf{2}$ 4-digit numbers with one exchange using the column method.
Complete the bar models using column addition to work out the answers.

Complete the bar models.

Tuesday $12^{\text {th }} \mathbf{-}$ I can add 2 4-digit numbers with more than one exchange using pictorial representations.
https://whiterosemaths.com/homelearning/year-4/week-6-number-addition-subtraction/
Watch the video entitled, "Add 2 4-digit numbers (more than 1 exchange)."
Watch this video up to 5 minutes and 38 seconds.
Wednesday $13^{\text {th }} \mathbf{- I}$ can add 2 4-digit numbers with more than one exchange using the column method.

Work all questions out using the column method.

Use <, > or $=$ to make the statements correct.

$3,456+789$
$2,829+1,901$
$7,542+1,858$ $1,818+1,999$

\square

$902+8,496$
$3,110+707$

Thursday $14^{\text {th }} \mathbf{-}$ I can subtract a 1 digit number from a 3 digit number with no exchanges using pictorial representations.

https://whiterosemaths.com/homelearning/year-3/week-4/

Watch the video entitled, "Add and subtract 3 digit numbers and 1s (not crossing tens)."
Watch the video up to 3 minutes 30 seconds.
Friday $15^{\text {th }} \mathbf{- I}$ can subtract a 1 digit number from a 3 digit number with no exchanging using the column method.

Have a go at using the column method for these questions.
a) 235-3
b) $357-5$
c) 578-7

