Calculations Policy

Mathematics Mastery

At the centre of the Mastery approach to the teaching of Mathematics is the belief that all children have the potential to succeed. They should have access to the same curriculum content and, rather than being extended by new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly, with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used in Year 1 to Year 6 in line with the requirements of the 2014 Primary National Curriculum.

Mathematical Language

The 2014 Primary National Curriculum is explicit in articulating the importance of children using the correct mathematical language as a central part of their learning (reasoning). It is essential that teaching using the strategies outlined in this policy is accompanied by the use of appropriate and precise mathematical vocabulary including the development of STEM sentences. New vocabulary should be introduced in a suitable context (for example, with relevant real objects, apparatus, pictures or diagrams) and explained carefully. High expectations of the mathematical language used are essential, with teachers only accepting what is correct.

How to use the policy

This mathematics policy is a guide for all staff at Borough Green Primary School and has been adapted from the work by NCETM and White Rose Maths Hub. It is set out as a progression of mathematical skills and not into year group phases to encourage a flexible approach to teaching and learning. It is expected that teachers will use their professional judgement and the Ready To Progress Criteria to decide when consolidation of existing skills is required or pupils and classes are ready to move onto the next concept. However, the focus must always remain on breadth and depth rather than accelerating through concepts. Children should not be extended with new learning before they are ready, they should deepen their conceptual understanding by tackling challenging and varied problems through conceptual and procedural variation. All teachers have access to the scheme of work from the White Rose Maths Hub including the mixed year group planning and are required to base their planning around their year group modules and not to move onto a higher year group's scheme of work. These modules use the Singapore Maths Methods and are affiliated to the workings of the 2014 Maths Programme of Study. Teachers have also been directed to the materials produced by the NCETM and the Maths Hub (mastery and greater depth).

The policy supports the use of a variety of concrete manipulatives and visual representations. For each of the four rules of number, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. The principle of the concrete-pictorial-abstract approach (Make it, Draw it, Write it) is for children to have a true understanding of a mathematical concept, they need to master all three phases within a year group's scheme of work.

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		$4+3=7$ $10=6+4$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ A box model which encourages the children to count on, rather than count all. Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ The abstract number line: What is 12 more than 5 ? What is the sum of 12 and 5? What is the total of 5 and 12? Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Children to draw the ten frame and counters/cubes. Use pictures or a number line. Regroup or partition the smaller number to make 10 . $9+5=14$ 14	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now? Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7 . Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

Conceptual variation; different ways to ask children to solve 21 + 34

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away. $15-3=12$	4-3 = -- $=4-3$
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13-4 Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Find the difference	Compare amounts and objects to find the difference.	Count on to find the difference. Comparison Bar Models Draw bars to find the difference between 2 numbers. Lisa is 13 years old. Her sister is 22 years ald. Find the difference in age between them.	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why $9-6=8-5=7-4$ have the same difference.
Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	Move to using numbers within the part whole model.
Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9.	Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?

Column method without regrouping			$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction. $\begin{array}{r} 32 \\ -12 \\ \hline 20 \end{array}$
Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Children can start their formal written method by partitioning the number into clear place value columns. Moving forward the children use a more compact method.

Conceptual variation; different ways to ask children to solve 391-186

186		391

Raj spent $£ 391$, Timmy spent $£ 186$.	
How much more did Raj spend?	
Calculate the difference between 391 and	391
186.	$\underline{-186}$

What is 186 less than $391 ?$

Missing digit calculations

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8 Children to represent the practical resources in a picture and use a bar model.	 Partition a number and then double each part before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10 $5,10,15,20,25,30$

Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscults are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences. 0100610 10 $\because 101010$ $\because 0 \% \% \mathrm{~F}$	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{gathered} 0 \\ 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{gathered}$

Grid Method

Show the link with arrays to first

 introduce the grid method.

4 rows
of 10 4 rows of 3

Move on to using Base 10 to move towards a more compact method.

4 rows of 13

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

Fill each row with 126.

Add up each column, starting with the ones making any exchanges needed.

Then you have your answer.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\mathbf{x}	30	5
7	210	35

$210+35=245$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

	10			8
10		100		80
3		30		24
x	1000	300	40	2
10	10000	3000	400	20
8	8000	2400	320	16

Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. $\begin{aligned} & 32 \\ & \times \quad 24 \\ & \hline \\ & \hline 8(4 \times 2) \\ & 120(4 \times 30) \\ & 40(20 \times 2) \\ & 600(20 \times 30) \end{aligned}$ This moves to the more compact method.

Conceptual variation; different ways to ask children to solve 6×23										
23	23	23	33	23	23	Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week?	Find the product of 6 and 23 What is the calculation? What is the product?			
23	23	23	23	23	23		$6 \times 23=$	100s	10s	1s
?						With the counters, prove that 6×23 $=138$	$\begin{array}{r} \text { Li }=6 \times 23 \\ 6 \quad 23 \\ \times \quad 23 \quad 6 \\ \hline \end{array}$		88 88 88 88 8	15 00 08 08 080 008 08

Calculation policy: Division

Key language: share, group, divide, divided by, half.

\begin{tabular}{|c|c|c|c|}
\hline \& Concrete \& Pictorial \& Abstract \\
\hline Sharing objects into groups \& I have 10 cubes, can you share them equally in 2 groups? \& Children use pictures or shapes to share quantities. \& \begin{tabular}{l}
Share 9 buns between three people.
\[
9 \div 3=3
\]
\[
6 \div 2=3
\]
\begin{tabular}{|l|l|}
\hline 3 \& 3 \\
\hline
\end{tabular} \\
Children should also be encouraged to use their 2 times tables facts.
\end{tabular} \\
\hline Division as grouping \& \begin{tabular}{l}
Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. \\
\(96 \div 3=32\)

 \&

Use a number line to show jumps in groups. The number of jumps equals the number of groups.

Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.

$$
\begin{aligned}
& 20 \div 5=? \\
& 5 \times ?=20
\end{aligned}
$$

 \&

$$
28 \div 7=4
$$

Divide 28 into 7 groups. How many are in each group?
\end{tabular}

\hline
\end{tabular}

Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	 Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r .

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using short division?
 between 5 bank accounts. How much
will be in each account? will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

What is the calculation?
What is the answer?

100s	10s	1s
		00000
${ }^{-0}$	00000	00000

